

Bridgelux ${ }^{@}$ Vesta-D Dual Channel 27W (DALI-2) Brick Driver

Product Data Sheet DS1229

Product Feature Map

Bridgelux Vesta-D (DALI) Dual Channel 27W Driver provides two dynamic constant current outputs for dual channel CCT tunable LED modules and arrays. This Driver interoperates with DALI Data features (251/252/253) enable LED drivers to provide a rich set of data for real-time performance monitoring, enhanced asset management, diagnostics, energy metering and other applications. The bi-directional nature of DALI enables data to be communicated with the lighting-control network. Please visit Www.bridgelux.com for more information.

Case temperature

Product Nomenclature
The part number designation for Bridgelux Vesta-D (DALI) Dual Channel 27W Driver is explained as follows:

Table 1: Product Selection Guide

Part Number	Configuration
BXDR-PS-27BS-E207D-01-A	Brick with strain relief built-in

Electrical Characteristics

Table 2: Input Electrical Characteristics

Parameter	Unit	Specification
Nominal voltage	\checkmark	220-240
Nominal frequency	Hz	0 / 50 / 60
AC voltage range	V	198-264
DC voltage range	V	176-250
Nominal current	A	0.16
THD (Full load)	\%	≤ 10
Power factor (Full load)	-	≥ 0.95
Efficiency (Full load)	\%	86
NO load	W	≤ 0.5
Protection class	-	11
Inrush current(Cold start)	A pk	<10 (th = $300 \mu \mathrm{~s}$)
Max.units per circuit breaker	-	B10: 17 B13: 23 B16: 28 B20: 35 C10: 37 C13: 48 C16: 59 C20: 74

Table 3: Output Electrical Characteristics

Parameter	Unit	Specification							
Nominal voltage range	V	$10-42 \mathrm{~V}$	$10-42 \mathrm{~V}$	$10-42 \mathrm{~V}$	10-42V	10-42V	$10-42 \mathrm{~V}$	$10-42 \mathrm{~V}$	10-38V
	Vdc	≤ 54							
Nominal current	mA	260	350	400	450	500	550	600	700
Current accuracy	\%	+/-5							
Dimming		$\begin{gathered} \hline \text { Yes } \\ \text { DALI-2 \& Push Dim } \\ \hline \end{gathered}$							
Dimming range	\%	$0.1 \%-100 \%$ PWM + Amplitude PWM Frequency $=20 \mathrm{KHz}$							
$\begin{gathered} \text { Current ripple LF } \\ <120 \mathrm{~Hz} \end{gathered}$	\%	≤ 10							
Pst LM	-	≤ 1							
SVM	-	≤ 0.4							
Maximum power	W	27							
Galvanic isolation	-	SELV							

Electrical Characteristics

Figure 1: Power Factor vs. Load
Power Factor vs Load

Figure 3: Efficiency vs. Load

Figure 2: Total Harmonic Distortion vs. Load
Total Harmonic Distortion vs Load

Figure 4: Expected Life Time

Life Time vs Case Temperature

Mechanical Characteristics

Table 4: Product Selection Guide

Characteristics	Specification
Dimensions	$156.0 \mathrm{~mm}(\mathrm{~L}) \times 44.0 \mathrm{~mm}(\mathrm{~W}) \times 22.0 \mathrm{~mm}(\mathrm{H})$
Enclosure Materials	PC Plastic
Weight	120 g
Ingress Protection	$\mathrm{IP20}$

Figure 5: Mechanical Drawing

Notes for Figure 5:

1. Drawing dimensions are in millimeters
2. Unless otherwise specified, all linear tolerances are $+/-1.0 \mathrm{~mm}$

Wiring Diagram

Table 6: Wiring

	PRI	
PRI	Cable cross-section	$0.75-1.0 \mathrm{~mm}^{2} /$ AWG 20-18
	Stripping	8 mm
SEC	Cable cross-section	$0.5-1.0 \mathrm{~mm}^{2} / \mathrm{AWG} 22-18$
	Stripping	8 mm

Notes for Table 6:

1. Hot plug-in or secondary switching of LEDs is not permitted and may cause a very high current to the LEDs.
2. Unless otherwise specified, all linear tolerances are $+/-1.0 \mathrm{~mm}$

DALI

In this operating mode the light level of the device is controlled via its DALI address.

Switch-Dim / ColorSwitch

Switch-button1: Setting of brightness Switch-button2: Setting of light color

Diode: VRated $\geq 280 V r m s(1 N 4004$ to 1 N4007) To be connected with any polarity in series with the 2nd button

Switch-Dim

The device can be controlled using switch-inputs for mains voltage, the dim level is saved at power-down and restored at power-up.

- Short press(<1S): switches LED driver ON and OFF
- Long press: LED modules are dimmed. After repush the LED modules are dimmed in the opposite direction.

Synchronization

In installations with LED drivers with different dimming levels or opposite dimming directions, all LED drivers can be synchronized to 50% dimming level by a 15 S push, switch off the light by short press one time, then long press. Up to 25 LED drivers can be controlled via direct switch-button use. The number of switch-button is limited by the sum of the overall cable length between switch(es) and the connected LED drivers, witch may not exceed 20m.

Wiring Diagram

ColourSwitch

- Short press(<1S): Tab one time: browse through 9 preset color temperatures in a cycle. Time between each tab should be longer than 1s.
- Long press: CT starts to change after the switch is pressed longer than 1s. The CT changing direction is from the current CT towards to the pre-set maximum CT. For the reverse direction of CT change, please release the pressing from the switch and press again, CT starts changing again in opposite direction after 1 s .
- If the power to the LED driver is switched off, the CT value set to the driver would be memorized and set again when the power is switched on again to the driver.
- Extra long press (Press time is longer than 15s), all LED drivers connected to the system would change CT to 3000 K .
- If all LED drivers are under DALI control, colourSWITCH does not work.

Corridor Function

Activating the Corridor Function

- By supply voltage: Activate the Corridor Function by permanently applying the supply voltage (220-240V, $50 / 60 \mathrm{~Hz}$) to the DALI input of the driver for at least 5 minutes, the light up 100% (under the default setting).
- By sensor: Activate the Corridor Function by keeping the movement in the effective sensing area for at least 5 minutes, the light up 100% (under the default setting).
Changing from the Corridor Function to the Switch-DIM function
- -By briefly pressing a push-button 5 times (at the DALI input, $220-240 \mathrm{~V}, 50 / \mathrm{Hz}$) within 3 seconds.

Corridor Function Phasing

Light value

Notice

The compatibility with other devices must be tested in advance to the installation.
DALI application and switch-control application can not apply to the system at the same time.

Protection

Table 7: Protection

Parameters	Specification
Short Circuit Protection	Re-power on to Recover If Fault Is Removed
Over Voltage Protection	Re-power on to Recover If Fault Is Removed
Over Circuit Protection	Re-power on to Recover If Fault Is Removed

DIP-switch operation instructions \& operating window

Table 8: Dip-switch operation instructions \& operating window

Dip-switch setting			$\mathrm{U}_{\text {out }}$	$\mathrm{I}_{\text {out }}$
1	2	3		
OFF	OFF	OFF	10-42V	260 mA
ON	OFF	OFF	10-42V	350 mA
OFF	ON	OFF	10-42V	400 mA
ON	ON	OFF	10-42V	450 mA
OFF	OFF	ON	10-42V	500 mA
ON	OFF	ON	10-42V	550 mA
OFF	ON	ON	10-42V	600 mA
ON	ON	ON	$10-38 \mathrm{~V}$	700 mA

Environmental and Regulatory Standards

Table 9: Environmental Conditions

Parameter	Specification
Ambient Operating Temperature	$-20^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$
Max. Case Temperature Tc	$+90^{\circ} \mathrm{C}(\mathrm{max})$
Max. Case Temperature (In fault condition)	$+110^{\circ} \mathrm{C}$
Humidity Rating	Maximum 85% Relative Humidity, non condensing
Storage Temperature	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Main Switching Cycles	$>100,000$
Expected Lifetime	50,000 hours ($\left.\mathrm{Tc}<90^{\circ} \mathrm{C}\right)$

Table 10: Regulatory Approvals and Compliance

Specification	Reference Standard	Condition
DC or AC supplied electronic controlgear for LED modules	EN 62384	electronic controlgear for use on DC or AC supplies up to 1000 V (alternating current at 50 Hz or 60 Hz) and with an output frequency which can deviate from the supply frequency
Conducted and Radiated EMI	$\begin{aligned} & \text { EN 55015:2019+A1:2020 (CISPR } \\ & 15: 2018 \text {) } \end{aligned}$	
Harmonic Current Emissions	EN IEC 61000-3-2:2019	
Voltage Fluctuations \& Flicker	IEC 61000-3-3:2013+A1:2019	
ESD (Electrostatic Discharge)	IEC 61547:2009 Section 5.2 Test des.: IEC 61000-4-2	4 kV contact discharge, 8 kV air discharge, level 3
Continuous Radiated Disturbance	IEC 61547:2009 Section 5.3 Test des.: IEC 61000-4-3	$3 \mathrm{~V} / \mathrm{m}, 80-1000 \mathrm{MHz}, 80 \%$ modulated at distance of 3 meters
Electrical Fast Transient	IEC 61547:2009 Section 5.5 Test des.: IEC 61000-4-4	$\pm 1 \mathrm{kV}$ on AC power port for 1 minute,
Surge	IEC 61547 Section 5.7 Test des.: IEC 61000-4-5	$\pm 1 \mathrm{kV}$ (differential mode) $\pm 2 \mathrm{kV}$ (common mode)
Continuous Conducted Disturbance	IEC 61547:2009 Section 5.6 Test des.: IEC 61000-4-6	$3 \mathrm{~V}, 0.15-80 \mathrm{MHz}, 80 \%$ modulated, Level 2
Voltage Dips	IEC 61547 Section 5.8. 5.9 Test des.: IEC 61000-4-11	70% dip during 25 cycles @ 50Hz, 30 cycles @ $60 \mathrm{~Hz} 0 \%$ dip during $1 / 2$ cycles
Touch Current	EN60598-1	lower than 0.7 mA , according to EN 60598-1 annex. G and EN 61347-1 annex A

Regulatory Standards (continued)

Table 11: Safety Agency Approvals

Specification	Reference Standard	Condition
ENEC / CE / UKCA	EN 61347-1:2015, EN 61347-2-13:2014+A1	ENEC Certification pending
Glow wire test	EN 61347-1:2015	Passed with increased temperature at $850^{\circ} \mathrm{C}$

Table 12: DALI-2 DT8 Standards

Specification	Reference Standard	Condition
System Components (Part 101)	EN62386-101	
Control Gear (Part 102)	EN62386-102	
LED Module (Part 207)	EN62386-207	Memory Bank 1 Extension
Color Control (Part 209)	EN62386-209	Energy Reporting
Luminaire Data (Part 251)	EN62386-251	Diagnostics \& Maintenance
Energy Data (Part 252)	EN62386-252	
253)		

Packaging

Table 11: Packaging Box Configuration

Parameters	Specification
Driver quantity	TBD
Outer dimensions	TBD
Weight	TBD

Design Resources

Application Notes

Please contact your Bridgelux sales representative for assistance on obtaining application support when designing with the Bridgelux Vesta-D Dual Channel Driver. For a list of available resources, visit www.bridgelux.com.

Precautions

CAUTION: PRODUCT HANDLING

Handle the Vesta-D Dual Channel Driver with care to prevent any damage from mechanical shock It is recommended to handle this driver in a static-free environment Do not open or disassemble the product
To maintain product warranty, the installer is responsible for ensuring that the driver's operating conditions do not exceed the maximum conditions stated within this data sheet

CAUTION: PRODUCT INSTALLATION

Incorrect installation of the Vesta-D Dual Channel Driver can cause irreparable damage to the driver, connected LEDs.
Pay attention when connecting the LED load and observe the correct polarity of the output terminals as specified in this data sheet and on the driver label.

CAUTION: ELECTRIC SHOCK

Be aware of the possibility of an electric shock hazard which can result in serious injury or death.
Disconnect power before servicing or installing this device.

Disclaimers

MINOR PRODUCT CHANGE POLICY

The rigorous qualification testing on products offered by Bridgelux provides performance assurance. Slight cosmetic changes that do not affect form, fit, or function may occur as Bridgelux continues product optimization.

About Bridgelux: Bridging Light and Life ${ }^{\text {TM }}$

At Bridgelux, we help companies, industries and people experience the power and possibility of light. Since 2002, we've designed LED solutions that are high performing, energy efficient, cost effective and easy to integrate. Our focus is on light's impact on human behavior, delivering products that create better environments, experiences and returns-both experiential and financial. And our patented technology drives new platforms for commercial and industrial luminaires.

For more information about the company, please visit bridgelux.com
twitter.com/Bridgelux
facebook.com/Bridgelux
youtube.com/user/Bridgelux
linkedin.com/company/bridgelux
WeChat ID: BridgeluxInChina

46410 Fremont Blvd
Fremont, CA 94538 USA
Tel (925) 583-8400
www.bridgelux.com

